Depressed cardiac tension cost in experimental diabetes is due to altered myosin heavy chain isoform expression.
نویسندگان
چکیده
Cardiac disease in diabetes presents as impaired left ventricular contraction and relaxation; however, the mechanisms underlying contractile protein dysfunction during the progression of disease are unknown. Accordingly, we assessed Ca(2+)-dependent tension development and tension-dependent ATP consumption (tension cost) in a rat model early (6 wk) and late (12 wk) after the onset of diabetes (50 mg/kg iv streptozotocin) using mechanical force- and enzyme-coupled UV absorbance measurements. Myofilament Ca(2+) sensitivity and maximal tension were unchanged between groups at either time point. Cross-bridge cycling rate was significantly decreased in diabetes, as indexed by tension cost (early control 5.4 +/- 0.4 and early diabetes 4.2 +/- 0.3; and late control 6.0 +/- 0.2 and late diabetes 4.2 +/- 0.2; P < 0.05). Because rodent models of cardiac disease are confounded by altered myosin isoform distribution, myosin content was determined by SDS-PAGE and densitometry. The cardiac content of alpha-myosin in diabetes was decreased to 41% +/- 4.1 at 6 wk and 32.5% +/- 2.9 at 12 wk of diabetes (early control 77.8% +/- 3.3 and late control 73.6% +/- 2.5). Separate control experiments demonstrated a linear decrease in tension cost with decreased alpha-myosin content. Given this, the depression of tension cost in this rodent model of diabetes could be fully explained by the altered myosin isoform distribution.
منابع مشابه
Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics.
Myosin heavy chain (MHC) isoforms alpha and beta have intrinsically different ATP hydrolysis activities (ATPase) and therefore cross-bridge cycling rates in solution. There is considerable evidence of altered MHC expression in rodent cardiac disease models; however, the effect of incremental beta-MHC expression over a wide range on the rate of high-strain, isometric cross-bridge cycling is yet ...
متن کاملMyosin Heavy Chain Expression and Oxidative Modifications in Diabetic Rat Hearts
In this study, we tested the hypotheses that 1) diabetes-induced disturbances in cardiac my-ATPase activity would be attributed to not only myosin heavy chain (MHC) isoform transitions, but also reduced amounts in MHC protein; and 2) if diabetes results in declines in the MHC protein content, this change would relate to oxidative damage to MHC. Diabetes was induced by a single intraperitoneal i...
متن کاملاثر حفاظت قلبی فعالیت بدنی اختیاری بر تغییرات بیان ژن زنجیره سنگین میوزین قلبی ناشی از القاء دوکسوربیسین در رات های مدل سالمندی
Background & Aims: Despite confirmed effectiveness of forced exercise training in reducing doxorubicin-induced cardiotoxicity, the role of voluntary physical activity in reducing doxorubicin-induced cardiotoxicity, especially in the elderly, still has not been investigated properly. The aim of this study was to investigate the protective effect of cardiac protection caused by voluntary phy...
متن کاملTitin isoform expression in normal and hypertensive myocardium.
OBJECTIVE Titin isoform expression patterns were examined to explain previously observed genetic differences in rat cardiac passive tension. METHODS Rat ventricles from male spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats (normotensive) were used to analyze the titin isoform patterns. The hypertensive status was verified by blood pressure measurements and heart weight to body wei...
متن کاملEffects of Myosin Heavy Chain Isoform Switching on Ca-Activated Tension Development in Single Adult Cardiac Myocytes
Cardiac myosin heavy chain (MHC) isoforms are known to play a key role in defining the dynamic contractile behavior of the heart during development. It remains unclear, however, whether cardiac MHC isoforms influence other important features of cardiac contractility, including the Ca sensitivity of isometric tension development. To address this question, adult rats were treated chemically to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 1 شماره
صفحات -
تاریخ انتشار 2004